










analysed and published by deLeeuw et al. [4]. The data was gen-

erated using the Sub-Megabase Resolution Tiling (SMRT) arrays

[13] using a set of approximately 32,000 clones that cover the

human genome. We normalised the data published in deLeeuw

et al. [4] according to the stepwise method described in Khojasteh

et al. [15]. The normalized data was then manually labeled by

identifying contiguous regions of gains and losses and then labeling

the clones contained in the regions as gains or losses. This ‘ground

truth’ labeling allowed us to test our model on high resolution real

data, likely to contain CNPs. Only the autosomes (chromosomes 1
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Fig. 3. Array CGH profile for chromosome 1 of the MCL cell line HBL2. The x axis for all panels indicate position in nucleotides (bp) along the chromosome.

Panel A shows the log2 ratios (right axis) plotted against the position of each clone on the chromosome. The yellow squares indicate clones contained in a region

labeled as a loss by an expert. The blue circles similarly indicate clones that are in a gain region. Clones marked with light blue stars indicate outliers. Panel B

shows the predicted gains (vertical green bars) and losses (vertical red bars) output by MergeLevels. Note that while predicting all the ground truth aberrations

correctly, MergeLevels predicts six additional aberrated regions, including two large loss regions near the ends of each chromosome arm. MergeLevels does not

produce probabilistic output so we fix predicted aberrations at probability¼ 1 and all other locations at probability¼ 0 for comparative purposes. PanelC shows

the output of the Base-HMM. The green curve indicates the marginal probability of gain at each location, the red curve indicates 1 minus the marginal probability

of loss at each location (left axis). There are numerous false positive predictions with the Base-HMM, many of which are caused by single clone outliers. PanelD

shows the output of the LSP-HMM (pooledmode) with green and red the same quantities as in panelC and purple stars indicating the set of predicted outliers. The

LSP-HMM predicts all ground truth aberrations correctly and there are much fewer clones falsely predicted as aberrated compared to both MergeLevels and the

Base-HMM. Note that the locations of the predicted outliers overlap many of the falsely predicted single clone aberrations by the Base-HMM. Notably, there are

several outliers predicted in the leftmost loss region on the p-arm of the chromosome. These correspond to CNPs and therefore alert the user that the significance of

this region of loss should be carefully considered.
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to 22) contained ground truth labeling therefore only these chro-

mosomes were considered in our analysis. This reduced the number

of clones per sample to 29,992. The data set contained a total of 195

aberrated regions: 123 losses and 72 gains covering approximately

1% of the human genome.

We used a list of CNPs (Wong et al., unpublished) detected using

SMRT arrays on a population of 95 normal individuals to set the

LSP probability of an outlier. The list contains all the observed

CNPs in the population. We discuss the potential use of other

available CNP lists in Section 4.

Figure 3 shows chromosome 1 of HBL-2 with ground truth labels

(A), with MergeLevels predictions (B) with Base-HMM predictions

(C) and with LSP-HMM predictions (D). The Base-HMM and the

LSP-HMM were both run in pooled mode. The LSP-HMM was

given the complete list of CNPs described above that covered

approximately 20% of the clones. We used po ¼ 10% and to ¼
0.01 to determine outliers. Other parameters used for this data set

are listed in Table 1. For MergeLevels, red bars indicate predicted

regions of loss, green bars indicate predicted regions of gain. For the

HMMs, red indicates 1 minus the probability of loss and green

indicates probability of gain. These plots are similar in spirit to

Engler et al. [6]. Figure 3 shows that the LSP-HMM predicts all

of the aberrated clones with far fewer false positive predictions than

both MergeLevels and the Base-HMM. Interestingly, MergeLevels

and the Base-HMM are prone to different kinds of false positive

predictions. MergeLevels tends to mis-label a small number of large

segments with means slightly different than the neutral state mean,

whereas the Base-HMM mis-labels a large number of very short

segments usually corresponding to outliers. The LSP-HMM is rela-

tively immune to both problems. In addition, the panel (D) depicts

predicted outliers as purple stars, showing the qualitative advantage

of providing additional information to the user in the output. This is

particularly relevant to the left-most loss region in the p-arm. The

ground truth labeling actually contains several clones that overlap

CNPs. These clones are labeled as outliers by the LSP-HMM and

therefore can instruct the user to treat the predicted loss with some

degree of caution. In addition to this qualitative assessment of our

algorithm, Figure 4 shows distributions of F-measures over the

eight MCL cell lines. Distributions are shown as box-and-whisker

plots where the line within the box indicates the median of

the distribution, the top and bottom edges of the box indicate the

third and first quartiles, the ends of the whiskers indicate the 95%

confidence intervals of the distribution. The single point shown

for Rob-HMM is outside the 95% confidence interval. The distri-

butions show systematic improvement of the Base-HMM over

MergeLevels, Rob-HMM over the Base-HMM and the LSP-

HMM over the Rob-HMM. MergeLevels had a mean F-measure

of 0.73 ± 0.10. Base-HMM had an F-measure of 0.77 ± 0.12

indicating that using an HMM framework improves accuracy

over MergeLevels. Further gains were obtained by running the

Base-HMM in pooled mode (F-measure for Base-HMM-C was

0.84 ± 0.07). Adding robustness in pooled mode (Rob-HMM-C)

contributed additional improvement (F-measure was 0.88 ± 0.06).

Finally using the robust model in pooled mode combined with

prior knowledge on locations of CNPs (LSP-HMM-C) resulted

in the highest accuracy (F-measure was 0.89 ± 0.05). In

Figure 4, we can easily see from the boxplots that Base-HMM-

C, Rob-HMM, Rob-HMM-C and LSP-HMM-C are all significantly
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Fig. 4. Distributions of F-measures over eight MCL cell lines for

MergeLevels, the Base-HMM, the Rob-HMM and the LSP-HMM with the

CNP location prior in single and pooled mode (labeled with ‘-C’). All HMM

variants performed better than MergeLevels (mean F-measure 0.73 ± 0.11).

The LSP-HMM-C variant had the highest mean F-measure (0.89 ± 0.05),

followed by the Rob-HMM-C (0.88 ± 0.06), followed by Base-HMM-C

(0.84 ± 0.07). In all cases, pooled mode outperformed single mode.
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Fig. 5. Distributions of recall over eight MCL cell lines for MergeLevels, the

Base-HMM, the Rob-HMM and the LSP-HMM with the CNP location prior

in single and pooled mode (labeled with ‘-C’) . All HMM variants had higher

recall rates than MergeLevels (mean recall rate 0.82 ± 0.18). In all cases,

pooled showed considerable improvement over singlemode and showed very

high recall rates. For Base-HMM-C, Rob-HMM-C and LSP-HMM-C the

recall rates were the same at 0.97 ± 0.03.
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Fig. 6. Distributions of precision over eight MCL cell lines for MergeLevels,

the Base-HMM, the Rob-HMM and the LSP-HMM with the CNP location

prior in single and pooled mode (labeled with ‘-C’). Base-HMM had higher

precision (0.76 ± 0.10) which was actually worsened slightly by pooling

(Base-HMM-C: 0.74 ± 0.10). The Rob-HMM and Rob-HMM-C had preci-

sion of 0.78 ± 0.09 and 0.81 ± 0.09 indicating that robustness and robustness

with pooling improves precision over the base model. Finally the LSP-

HMM-C had the highest precision rates (0.83 ± 0.08). Pooling for the

LSP-HMM showed the most benefit of all the HMM variants.
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better (at the 5% level) than MergeLevels. Base-HMM and LSP-

HMM are not. We also performed a one way anova test (which is

slightly less robust), and found that Rob-HMM-C and LSP-HMM-C

are both significantly different (at the 5% level) to MergeLevels.

Similar comments apply to the results on simulated data (see

Section 3.2). Although the LSP-HMM-C is basically the same as

the Rob-HMM-C, it is notable that it does not do worse despite

being ‘informed’ by 20% of the locations in the LSP. This suggests

that the model is robust to LSPs that are not supported by the data.

This is significant given that our CNP list covers about 20% of the

clones, yet in any one sample a much smaller portion of clones are

expected to overlap a CNP (recall that the CNP list is made up of

a union of all observed CNPs from a population of individuals).

We note that the pooled mode worked considerably better for all

HMM variants, demonstrating the advantage of ‘‘borrowing statis-

tical strength’’ from all the data in the sample during parameter

estimation.

To assess what was contributing to the differences in F-measure,

we plotted precision and recall separately. The recall rates are

shown in Figure 5 and demonstrate that pooling shows considerable

improvement over single mode for the HMM variants. The

recall rates were equally very high for the pooled HMM variants

(0.97 ± 0.03). In contrast, differences in the HMM variants were

observed for precision (see Figure 6). We observed improved

precision of Rob-HMM-C over the Base-HMM-C indicating that

considering outliers reduced the number of false positives. LSP-

HMM-C had the highest precision (0.83 ± 0.09), therefore the CNP

knowledge further reduced false positives (see Figure 6). The high

recall rates for LSP-HMM-C suggests that any future effort to

improve accuracy should first focus on reducing false positive

predictions to improve precision. However, we noted numerous

examples, such as at the centromeric end of the q-arm of HBL-2

chromosome 1 (Figure 3 D) where the falsely predicted aberrations

could indeed be real.

3.2 Simulated data with outliers

To validate our model on additional data set with ground truth, we

used the synthetic data created by Willenbrock and Fridlyand [24],

downloaded from http://www.cbs.dtu.dk/�hanni/aCGH/. This data

is fairly realistic, since it is generated by sampling segments from a

large set of primary tumours [24]. To simulate CNPs, we modified

this data by adding outliers planted randomly at 10% of the loca-

tions in the samples. The positions were sampled from a uniform

distribution from 1 to 2000 (the number of clones in each sample).

The log2 ratios for these outliers were sampled from a Gaussian

distribution with mean 0 and variance 2. This gave us a data set with

ground truth locations for the aberrated clones and for the positions

of the outliers.

We chose 10% as the outlier fraction for the following reason.

Our internally generated list of CNPs covers nearly 20% of the

SMRT clones. However, publicly available CNPs represent

approximately 1% of the SMRT clones. Therefore, we chose 10%

as a reasonable compromise between these extremes. We also ran

the Base-HMM and Rob-HMM on the original synthetic data and

both performed extremely well (mean F-measure 0.95 ± 0.10 and

0.93 ± 0.12 respectively). This provided further justification to

create a harder data set that contained the outliers.

In our experiments, we compared the effects of considering all

the known outliers to adding additional locations to the prior

which were not outliers. This simulated the effect of an incorrect

prior. Note that we can choose the strength of the prior. We set the

prior probability to 0.01.

Figure 7 shows the distributions of accuracy on 100 samples

for the three variants of our algorithm, including the LSP-HMM

informed by a superset of the positions, and exactly all the positions

of known outliers. Results on this data echo our results on MCL.

MergeLevels performs considerably worse than all the HMMs: its

F-measure was 0.37 ± 0.26 over 100 samples. The Base-HMM had a

F-measure of 0.58 ± 0.16, validating that by using an HMM frame-

work, significant improvement is attained over MergeLevels. As for

MCL data, further improvement was attained by adding outlier

detection. The Rob-HMM-C had a F-measure of 0.64 ± 0.24.

Finally the versions of the LSP-HMM-C performed better when

informed by a superset of the positions (F-measure¼0.66 ± 0.22),

and exactly all the positions (F-measure 0.68 ± 0.19) of the known

outliers. This indicates that a weak prior, when supported by the data

can help discover outliers, however contradictory evidence will

usually overwhelm the prior when it is wrong.

4 DISCUSSION

We have presented a new model for classifying aberrated clones in

aCGH data, which is robust to outliers and is able to leverage prior

knowledge about CNP locations. We have demonstrated that on

real and simulated data this model works better than a standard

HMM and a state of the art method, DNAcopy+MergeLevels.

We also determined that estimating parameters of the HMM

using pooled data across chromosomes improves accuracy.

Our results showed that recall rates were very high for all HMM

variants on the MCL data, and the differences in performance can be

mainly attributed to precision rates. We showed that the LSP-HMM
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Fig. 7. F-measures for 100 samples of Willenbrock and Fridlyand’s simu-

lated data augmented with outliers. From left to right: MergeLevels had an

F-measure of 0.37 ± 0.26. The Base-HMM had better accuracy (F-measure

of 0.58 ± 0.16). Further improvement was gained with the Rob-HMM-C

(F-measure ¼ 0.64 ± 0.24). As expected, informing the LSP-HMM with

the locations of the outliers (LSP-HMM1-C) resulted in the best performance.

LSP-HMM2-C (F-measure ¼ 0.66 ± 0.22) was informed with a superset of

the outlier locations, and LSP-HMM1-C (F-measure 0.68 ± 0.19) was given

all and only the outlier locations.
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is immune to falsely predicting large regions that MergeLevels

typically will mis-label and single clone outliers which the standard

HMM falsely predicts as gains. We also showed qualitatively

how the LSP-HMM enables the user to cross-reference predicted

outliers with known CNPs and therefore allows for a more thorough

interpretation of any predicted gains and losses.

As mentioned previously, the hyperparameters for both MCL and

the synthetic data were set by hand. We believe that sensitivity to

parameter settings (in particular with LSPs) are partially mitigated

by pooling data across chromosomes. We showed in Figure 5 and

Figure 6 how pooling improved both recall and precision rates for

the LSP-HMM. We also noted that even though the CNP list for the

MCL data consisted of 20% of the clones, the data overwhelms the

prior at most locations. In pooled mode this phenomenon is signifi-

cantly more pronounced as there is substantially more data available

to help overwhelm the prior in locations where it is wrong. To

further test this theory, our future work will involve accumulating

a set of CNPs that is a union of numerous sets of previously pub-

lished CNPs, for example Iafrate et al. [12], Sebat et al. [22], Tuzun

et al. [23], Conrad et al. [3] and McCarroll et al. [17]. We anticipate

that as long the the prior is not too strong a more comprehensive list

of LSPs will further help aCGH analysis and the interpretation

of results.

In addition to pooling, we plan to add levels to the hierarchy of

the model to make it robust to parameter settings. We will put

hyper-hyperparameters on the hyperparameters as discussed in

Section 2.3. This increases the number of parameters to estimate,

but the potential benefits of avoiding hand-tuning of parameters

offset this additional cost. In addition, we also set the number of

states of the HMM by hand. We noticed that the 4-state model

performed better than the 3-state model, however the variance

on the 4th state always converged to high values. This allowed

the 4th state to ‘compete’ with the outlier process to explain the

outliers, and therefore may have resulted in false positives. We are

currently working on a new model that solves the ambiguities

observed between high-variance states and the outlier process.

To evaluate the clinical applicability of our model, we plan to

apply the method to samples extracted from a cohort of lymphoma

patients. The aCGH profiles for these patients have been manually

classified and numerous clinically relevant aberrations have been

identified. We are also developing new models to identify

locations of recurrent aberrations across samples, and to use

other forms of prior knowledge, such as the locations of fragile

sites. Combined with CNP information, we anticipate that such

models will be extremely useful in profiling sub-types of cancer

with aCGH.
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