
Chapter 3

Important Probability
Distributions

In this chapter we will use probability distributions to answer important
biological questions about populations based on observed sample data. These
questions include:

• If the CCND3 (Cyclin D3) gene expressions for all the ALL patients
are normally distributed with mean 1.90 and standard deviation 0.5,
what is the probability of observing expression values larger than 2.4?

• What is the probability of finding fourteen purines in a microRNA with
a length of 22 nucleotides?

• If we cross two heterozygous carriers of the recessive allele for albinism,
then what is the probability that 5 of the 6 F1 offspring will be albino?

In this chapter, several important distributions will be explored as tools
to answer these questions. A probability distribution assigns a probability
to each measurable subset of the possible outcomes of a random experiment,
survey, or procedure. The particular distributions this chapter covers in-
cludes the binomial discrete probability distribution and the normal, t, F,
and chi-squared continuous probability distributions. Combined, these dis-
tributions have a wealth of applications to statistically test many biological
hypotheses. In addition, when relevant to our study, the probability density
function (PDF), the cumulative distribution function (CDF), the mean µ
(mu), and the standard deviation σ (sigma), are explicitly defined.
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3.1 Discrete probability distributions

Discrete distributions model discrete (typically integral) data, for example
the number of samples with a certain phenotype. The most common discrete
distributions used to model such data include the Bernoulli, binomial, Pois-
son, and hypergeometric distributions. In this chapter, we will introduce the
Bernoulli, binomial and Poisson distributions and cover the hypergeometric
in later chapters. All of the discrete probability distributions above that we
will cover can be defined by a Probability Mass Function (PMF) that defines
masses of probability at each discrete value within the domain of the discrete
probability distribution. A probability mass function P (X) of a random dis-
crete variable X must satisfy 2 important properties:

1. For all values k, the probability P (X = k) is ≥ 0 (i.e. no negative
probabilities are allowed).

2. For all values k, the sum of the probabilities
∑ki∈Domain(X)

i=1 P (X = k)
is equal to 1.

3.1.1 Bernoulli distribution

The Bernoulli distribution is a very basic probability distribution of a random
variable which takes the value 1 with success probability p and the value 0
with failure probability q = 1 − p. The Bernoulli distribution can be easily
explained with the coin toss illustration. Suppose we toss a coin once, giving
us either “Heads” or “Tails”, and that we agree on counting Heads. Then the
random variable X = 1 in case of a Heads and X = 0 in case of a Tails.
Since we do not know whether the coin is fair, we let P (X = 1) = p where
p is a number between 0 and 1. By the complement rule it follows that
P (X = 0) = 1 − p = q. The expectation of a Bernoulli distributed random
variable is

E(X) = 0 · P (X = 0) + 1 · P (X = 1) = 0 · (1− p) + 1 · p = p.

Therefore, in a betting situation where you would win one dollar, euro, or
yen in the case of a Heads and nothing in case of a Tails, you would expect
to win p of your favorite currency. Let X be a discrete random variable with
values xk having probabilities P (X = xk), k = 1, · · · ,m. The variance of a
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Bernoulli distributed random variable is

σ2 = Var(X) =
2∑

k=1

(xk − E(X))2P (X = xk) = (0− p)2 · (1− p) + (1− p)2 · p

= p2 − p3 + p− 2p2 + p3 = p(1− p). (3.1)

3.1.2 Binomial distribution

The binomial distribution has many applications in medicine and bioinfor-
matics. It models the outcomes of n repeated trials where each indepen-
dent trial has a dichotomous outcome, for example success-failure, healthy-
diseased, heads-tails, or purine-pyrimidine. When there are n trials, then the
number of ways to obtain k successes is given by the binomial coefficient:(

n

k

)
=

n!

k!(n− k)!
,

where n! = n · (n − 1) · · · 1 and 0! = 1 (Samuels & Witmer, 2003). The
binomial probability of k successes out of n trials consists of the product
of this coefficient with the probability of k successes and the probability of
n − k failures. Let p be the probability of success in a single trial and X
the (random) variable denoting the number of successes. We say that X is
binomially distributed and write X ∼ B(n, p). Then the probability P of the
event (B(n, p) = k) that k successes occur out of n trials can be expressed
as:

P (B(n, p) = k) =
n!

k!(n− k)!
pk(1− p)n−k, for k = 0, · · · , n. (3.2)

The collection of these probabilities is called the binomial probability
mass function (PMF). Also, for a binomially distributed random variable
X ∼ B(n, p): the mean µ = np, and variance σ2 = np(1 − p), and the
standard deviation σ =

√
np(1− p) . Lastly, also note that the Bernoulli

distribution is a special case of the binomial distribution with n = 1.

Example 1: Teaching demonstration. Load the TeachingDemos package
and execute the function vis.binom() to visualize the binomial distribution
for diffent values of n and p. Note that the TeachingDemos require XQuartz
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from www.xquartz.org in order to run on the Mac platform. Click on "Show
Normal Approximation" to observe that the normal approximation to the
binomial improves as n increases, and as p approaches 0.5.

> library(TeachingDemos)
> vis.binom()

Example 2: Albinism inheritance. If we cross two heterozygous carriers
of the recessive allele for albinism, then each F1 mouse has probability 1/4
of being albino. What is the probability of exactly one F1 mouse out of
three having albinism? To answer this question, we assign n = 3 (number of
offspring), k = 1 (number of albino offspring), and p = 0.25 (probability of
each F1 mouse being albino) in Equation (3.2) and obtain:

P (B(3, 0.25) = 1) =
3!

1!(3− 1)!
0.2510.752 = 3 · 0.140625 = 0.421875.

We can compute this in R using the choose() function:
> choose(3,1)* 0.25^1* 0.75^2 # binomial coefficient for "3 choose 1"
[1] 0.421875

The choose(3,1) (read as “3 choose 1”) above computes the binomial
coefficient. It is more efficient to compute the above calculation by using
the built-in binomial probability mass function dbinom(k,n,p) For example,
below we use the dbinom(k,n,p) function to print all the probabilities of
observing 0 through 3 albino F1 mice out of 3 total offspring:
> for (k in 0:3) {
+ print(dbinom(k,3,0.25)) # binomial probability mass function
+ }
[1] 0.421875
[1] 0.421875
[1] 0.140625
[1] 0.015625

From the output above, we see that the probability of no albino F1 mouse
is 0.4218 and the probability that all three F1 mice are albino equals 0.0156.

The related pbinom(k,n,p) function (changing d into p) yields the cu-
mulative distribution function (CDF) - which contains the cumulative prob-
abilities that monotonically increase from 0 to 1.The values of the B(3, 0.25)
probability mass and cumulative distribution functions are summarized in
Table 3.1.
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Table 3.1: Binomial probability mass and cumulative distribution function values for S3,
with p = 0.25.

Number of successes k = 0 k = 1 k = 2 k = 3
Probability mass P (B(3, 0.25) = k) 0.4218 0.4218 0.1406 0.0156
Cumulative distribution P (B(3, 0.25) ≤ k) 0.4218 0.843 0.9843 1

Example 3: Four coin tosses. After four coin tosses, we can use the
CDF of the binomial distribution B(4, 0.5) to determine the probability
P (B(4, 0.5) ≤ 3) that the number of heads is lower than or equal to three:

> pbinom(3,4,0.5) # binomial cumulative distribution function (CDF)
[1] 0.9375

Example 4: Number of purines in a microRNA. RNA consists of a
sequence composed of 4 nucleotides: A, G, U, and C. The first two (A, G)
are purines and the last two (U, C) are pyrimidines. For illustration, let’s
suppose that the length of a certain microRNA is 22 nucleotides, that the
probability of a purine equals 0.7, and that the process of placing purines
and pyrimidines is binomially distributed. The event that our microRNA
contains 14 purines is represented as X ∼ B(22, 0.7) = 14. The probability
of this event can be computed by

P (B(22, 0.7) = 14) =
22!

14!(22− 14)!
0.7140.38

and calculated in R with the dbinom() function:

> dbinom(14,22,0.7) # binomial probability mass function (PMF)
[1] 0.1422919

Thus, the value 0.14122929 is the value of the binomial probability mass
function (PMF) at B(22, 0.7) = 14. Next, the probability of the event of
13 or less purines equals the value of the cumulative distribution function
(CDF) at B(22, 0.7) = 13. The probability P (B(22, 0.7) ≤ 13) can be cal-
culated with the pbinom() function:

> pbinom(13,22,0.7) # binomial cumulative distribution function (CDF)
[1] 0.1864574
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The probability of strictly more than 10 purines is:

P (B(22, 0.7) ≥ 11) =
22∑

k=11

P (S22 = k)

= 1−
10∑
k=1

P (S22 = k)

and can be calculated with either the dbinom() or pbinom() function:
> sum(dbinom(11:22,22,0.7)) # integral over the binomial PMF
[1] 0.9859649
> 1 - pbinom(10, 22, 0.7)
[1] 0.9859649

B(3, 0.25) binomial probability
mass function (PMF)
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Figure 3.1: Binomial probabilities with
n = 22 and p = 0.7

B(3, 0.25) binomial cumulative
distribution function (CDF)
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Figure 3.2: Binomial cumulative proba-
bilities with n = 22 and p = 0.7.

We can plot the binomial probability mass function (PMF) by using the
dbinom() function:
> x <- 0:22
> plot(x, # X-values
+ dbinom(x,size=22,prob=.7), # binomial probability mass function
+ type="h", # histogram
+ col="blue",
+ lwd=4, # make lines thicker
+ xlab="x",
+ ylab="Binomial probability mass function f(x)",
+ cex.lab=1.5) # make axis labels big
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The resultant Figure 3.1 shows that the largest probabilities occur near
the expectation E (B(3, 0.25)) = 15.4.
Similarly, the binomial cumulative distribution function (CDF) can be plot-
ted using the step function stepfun() in conjunction with the binomial CDF
function pbinom():
> binomialCDF = stepfun(x, c(0,pbinom(x,size=22,prob=.7))) # create a step function from

↪→ binomial CDF
> plot(binomialCDF, # binomial cumulative function
+ col="red",
+ vertical=FALSE,
+ lwd=4, # make lines thicker
+ xlab="x",
+ ylab="Binomial cumulative distribution function F(x)",
+ main=NULL,
+ cex.lab=1.5) # make axis labels big)

The resultant Figure 3.2 illustrates that the cumulative distribution func-
tion (CDF) is an increasing step function, with x on the horizontal axis and
P (B(22, 0.7) ≤ x) on the vertical. In general, the CDF is very useful for
quickly ascertaining P (X ≤ x) for any discrete or continuous random vari-
able X and any value x.

Lastly, we can simulate the number of purines in 1000 randomly produced
microRNAs where the probability of a purine is p = 0.7 and the length is
n = 22. In other words, we can produce a random sample of size 1000
from the B(22, 0.7) binomial cumulative distribution. We use the rbinom()
function to perform the sampling.
> rbinom(1000,22,0.7) # random sampling from the binomial CDF

[1] 16 16 21 18 17 18 15 16 18 16 11 16 19 12 16 17 15 15 15 14 16 12 15 12
[25] 16 17 15 13 15 17 17 17 12 16 15 16 16 15 11 16 16 17 17 14 13 13 13 16
[49] 17 16 18 17 17 15 15 16 20 16 21 19 21 12 11 14 17 14 14 17 10 15 14 12
....

3.1.3 Poisson Distribution

When n is large and p is small, computations involving
(
n
k

)
may become

practically infeasible. In such a case the binomial distribution can be ap-
proximated by the Poisson distribution. Since the values of the Poisson
distribution consist of non-negative integers, it potentially provides a useful
model for many phenomena in bioinformatics. Examples occur from obser-
vations of the number of occurrences of a certain event within a unit of time,
space, or length. The Poisson distribution can be used to model a Poisson
process whereby random events occur continuously and independently at a



64 CHAPTER 3. IMPORTANT PROBABILITY DISTRIBUTIONS

constant mean rate λ. The density of a Poisson distributed random variable
is

f(x) = P (X = x) =
e−λλx

x!
, x = 0, 1, 2, · · · , and λ > 0.

Here 0! = 1. This gives a whole class of Poisson distributions because any
distinct value of the parameter λ gives a distinct density function. To check
Property 1 of a density function, note that e−λ, λx and x! are all positive.
This implies that f(x) is positive for all positive integers x. By adding over
x the distribution function becomes

F (y) =

y∑
x=0

P (X = x) =

y∑
x=0

e−λλx

x!
.

Let’s check that Property 2 for densities holds. From calculus it is known
that eλ =

∑∞
x=0 λ

x/x! (e.g. Goldstein, Lay, & Schneider, 2001, p. 582), so
that

∞∑
x=0

P (X = x) =
∞∑
x=0

e−λλx

x!
= e−λ

∞∑
x=0

λx

x!
= e−λeλ = 1.

To compute its expectation

E(X) =
∞∑
x=0

e−λλx

x!
x = e−λλ

∞∑
x=1

λx−1

(x− 1)!
= λe−λ

∞∑
x=0

λx

x!
= λe−λeλ = λ.

In a similar manner it can also be shown that Var(X) = λ.

Poisson approximation to the binomial. To see how well the Poisson(λ <
5) distribution can approximate the binomial distribution B(n, p) as n in-
creases and p decreases, we can plot different binomial distributions on top
of the Poisson(λ < 5) probability mass function (PMF). For example, Figure
3.3 illustrates how well the Poisson(λ = 4) distribution can approximate the
binomial distribution B(n, p) for n > 50 and p < 0.1.
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The Poisson(λ = 4) approximation to the binomial distribution B(n, p)
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Poisson(λ = 4)
B(n = 10, p = 4 10)
B(n = 20, p = 4 20)
B(n = 30, p = 4 30)
B(n = 40, p = 4 40)
B(n = 50, p = 4 50)
B(n = 60, p = 4 60)
B(n = 70, p = 4 70)
B(n = 80, p = 4 80)
B(n = 90, p = 4 90)
B(n = 100, p = 4 100)

Figure 3.3: Multiple binomial distributions B(n, p) with increasing n and decreasing p are
plotted on top of the Poisson(λ = 4) probability mass function (PMF). We can see that
the Poisson(λ = 4) distribution can well approximate the binomial distribution B(n, p)
for n > 50 and p < 0.1.
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In Figure 3.3, we use the lines() function in a for loop to add 10 ad-
ditional binomial curves on top of the original plot of the Poisson(λ = 4)
probability mass function (PMF). We also assign the PMF and each curve
to a numbered color from 1 to 11. The R engine will assign each of the num-
bers to a different color as determined by a predefined color palette. Lastly,
we use the apply() function in combination with the expression() and
bquote() functions to create the color legend for the Poisson PMF and the
10 additional binomial curves:
> lambda=4
> plot(x, # X-values
+ dpois(x,lambda),# Poisson density function
+ type="h", # histogram
+ col=1,
+ lwd=8, # make lines thicker
+ ylim=c(0,0.25), # range of the y-axis
+ xlab="x",
+ ylab="Density function f(x)",
+ cex.lab=1.5) # make axis labels big
> for (counter in 1:10) {
+ lines(x, dbinom(x, size=counter*10, prob=lambda/(counter*10)), col=counter+1, lwd=2)
+ }
> legend("topright", lty=rep(1,11), lwd=rep(2,11), col=1:11,
+ legend=c(expression(Poisson(lambda == 4)),
+ as.expression(sapply(seq(10,100, 10), function(x) bquote(B(n ==.(x), p == 4/.(

↪→ x)))))))

Example 1: Teaching demonstration. To visualize that the Poisson dis-
tribution converges to that of the binomial, load the package TeachingDemos
and give the command vis.binom(). Click on "Show Poisson Approxima-
tion" and adjust the parameters of the slider box.

> library(TeachingDemos)
> vis.binom()

Example 2: Daily lottery. The daily lottery is an example of the Poisson
distribution in action. Assume that the probability to win is about 1 in
40 million and the number n of sold tickets is a large 80 million. Then
λ = np = 80 · 106/(40 · 106) = 2. Hence, the probability of no winners is

P (X = 0) =
e−220

0!
= 0.1353

and the probability of one winner is

P (X = 1) =
e−221

1!
= 0.2706.
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We can compute these values directly in R. However, it is more efficient
to use the built-in function dpois() with input (x, λ):
> exp(-2)*2^0/factorial(0)
[1] 0.1353353
> dpois(0,2)
[1] 0.1353353
> exp(-2)*2^1/factorial(1)
[1] 0.2706706
> dpois(1,2)
[1] 0.2706706

Poisson probability mass function
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Figure 3.4: Poisson probabilities with
λ = 5.

Poisson cumulative distribution
function (CDF)
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Figure 3.5: Poisson cumulative probabil-
ities with λ = 5.

We can plot the Poisson probability mass function (PMF) for λ = 5 by using
the dpois() function:
> x <- 0:20
> plot(x, # X-values
+ dpois(x,5), # Poisson mass function
+ type="h", # histogram
+ col="blue",
+ lwd=4, # make lines thicker
+ xlab="x",
+ ylab="Poisson probability mass function f(x)",
+ cex.lab=1.5) # make axis labels big

The resultant Figure 3.4 shows that the largest probabilities occur near
the expectation E(X) = 5 and that the distribution is also quite symmetric
around E(X) = 5. Similarly, the Poisson cumulative distribution function
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(CDF) can be plotted using the step function stepfun() in conjunction with
the Poisson CDF function ppois():
> poissonCDF = stepfun(x, c(0,ppois(x,5))) # create a step function from poisson CDF
> plot(poissonCDF, # poisson cumulative function
+ col="red",
+ vertical=FALSE,
+ lwd=4, # make lines thicker
+ xlab="x",
+ ylab="Poisson cumulative distribution function F(x)",
+ main=NULL,
+ cex.lab=1.5) # make axis labels big)

The resultant Figure 3.5 illustrates that the cumulative distribution func-
tion (CDF) is an increasing step function, with x on the horizontal axis and
P (Poisson(5) ≤ x) on the vertical.

Example 3: Finding k-mers. Let’s compute the probability of observing
the k-mer or “word” CAGTAC consisting of k = 6 letters (nucleic acids) in
a large DNA sequence of length 107 nucleotides. If the probability of each
letter equals 0.25, then the probability of observing the 6-mer CAGTAC is
0.256 = 2.44·10−6 = p. Suppose we only look at consecutive, non-overlapping
6-mers of length 6 in the reading frame whereby the first 6-mer starts at the
beginning of the sequence. In this 6-mer reading frame, the DNA sequence
contains 107/6 = 1.6 · 106 = n consecutive, non-overlapping 6-mers. And the
number of CAGTACs we expect to find is λ = np = 2.44 · 1.6 = 3.9. Hence,
the probability to find no CAGTAC 6-mer in this reading frame is

P (X = 0) =
e−3.9 · 3.90

0!
= e−3.9 = 0.020.

Again, we can compute this value directly in R or use the built-in function
dpois() with input (x, λ):
> exp(-3.9)*2^0/factorial(0)
[1] 0.02024191
> dpois(0,3.9)
[1] 0.02024191

And by the complement rule the probability of finding at least one CAGTAC
6-mer is 1− 0.020 = 0.980.

> 1 - dpois(0,3.9)
[1] 0.9797581

Example 4: Gaps in an open reading frame. Suppose that, within a
certain window length on an assembly of a DNA sequence, the mean number



3.1. DISCRETE PROBABILITY DISTRIBUTIONS 69

of random gaps within an open reading frame is λ = 5. We can compute the
probability of two gaps P (X = 2) = e−552/2! by direct calculation:
> exp(-5)*5^2/factorial(2)
[1] 0.08422434

where factorial(2) = 2! However, it is more efficient to use the built-in
function dpois() with input (x, λ):

P (X = 2) = dpois(2, 5) = 0.08422434.

> dpois(2,5)
[1] 0.08422434

To compute the probability of strictly less than 4 gaps, we use the built-in
function ppois() as follows:

F (3) = P (X ≤ 3) =
3∑

x=0

P (X = x) =
3∑

x=0

e−55x

x!
= ppois(3, 5) = 0.2650259.

> ppois(3,5)
[1] 0.2650259

Since λ = 5, it follows that E(X) = Var(X) = 5. To verify this by random
sampling, a random sample of size 1000 can be drawn from the Poisson
distribution with λ = 5 by the command rpois(1000,5). Then computing
the sample mean and variance reveals that these are close to their population
counterparts:
> y <- rpois(1000,5) # 1000 random samples with lambda=5
> mean(y)
[1] 5.081
> var(y)
[1] 5.555995

We can also compute the quantiles x0.025 and x0.975 which are the x-values
for which the P (X ≤ x) = 0.025 and P (X ≤ x) = 0.975, respectively. Thus,
in R the quantile function is the inverse of the cumulative function. We
can compute these quantiles of the Poisson distribution by using the built-in
function qpois() as follows:
> qpois(c(0.025,0.975), lambda=5, lower.tail = TRUE)
[1] 1 10

As illustrated in Figure 3.5 the distribution function is a step function,
so that there is no exact solution for the quantiles. To check this use
sum(dpois(1:10,5)):
> sum(dpois(1:10,5))
[1] 0.9795668
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3.2 Continuous probability distributions

Continous distributions are used to model real-valued (decimal) data, for
example gene expression fold-change or protein concentration. The most
common continuous distributions used to model biological data include the
exponential, normal, t, F, and chi-squared distributions. In this chapter, we
will introduce all five distributions and describe the important characteristics
of each. Analogous to probability mass functions (PMFs), the five continu-
ous probability distributions above can be defined by a “Probability Density
Function” (PDF) that defines the density of the probability of random vari-
able X between any two real values. A probability density function f(x) of
a random continuous variable X must satisfy 2 important properties:

1. For all real values x between xmin and xmax, the density f(x) is > 0
In other words, only positive densities are allowed over all real values within
the domain of X where xmin ≤ x ≤ xmax.

2. For all real values x between xmin and xmax, the infinite sum of all their
probabilities P (xmin ≤ X ≤ xmax) =

∫ xmax

xmin
f(x)dx is equal to 1. Graphically,

we say that the area under the graphed curve f(x), over the interval from
xmin to xmax, is equal to one.

The expression
∫ xmax

xmin
f(x)dx is called the definite integral of f(x) with re-

spect to x over the interval (xmin, xmax), and it represents the area under the
function f(x) in that interval (see Appendix).

In addition, the antiderivative F (x) of f(x) is called the cumulative distribu-
tion function (CDF) in the context of probability and statistics. In statistics,
the antiderivative F (x) gives the probability P (X ≤ x) that the random vari-
able X takes a value less than or equal to x. When the antiderivative F (x)
is known for a given density function f(x), it is very useful for calculating
the probability P (x1 ≤ X ≤ x2) that the random variable X takes a value
within the interval (x1, x2):

P (x1 ≤ X ≤ x2) =

∫ x2

x1

f(x)dx = [F (x)]x2x1 = F (x2)− F (x1)

Fortunately, R knows the antiderivative F (x) for many probability density
functions in order to allow for fast probability calculations.
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3.2.1 Exponential distribution

The number of occurrences of a certain phenomenon within a fixed time
interval is Poisson distributed with mean λ, depending on the length of the
interval. The probability of the waiting time being greater than t is P (X >
t) = e−λt. This formula is closely related to the density function of the
exponential distribution which is f(x) = λe−λx, where λ is a positive number.
For this density function it is straightforward to check Property 1 and 2. In
particular, an exponential function with a positive base has positive function
values (see Appendix). Hence, we have that 0 < e−λx for all real x and
Property 1 holds. To check Property 2, we compute∫ ∞

0

f(x)dx =

∫ ∞
0

λe−λxdx =
[
−e−λx

]∞
0

= lim
x→∞
−e−λx−(−e−λ·0) = 0−(−1) = 1.

Hence, for any positive λ it holds that f(x) is a density function of a
random variable X. Since this holds for each distinct positive value of λ, a
whole family of exponentially distributed random variables is defined. The
formulation of the cumulative distribution function F (x) is

F (x) =

∫ x

0

f(y)dy =

∫ x

0

λe−λydy =
[
−e−λy

]x
0

= −e−λx − (−e0) = 1− e−λx.

Next, we compute the expectation E(X) of an exponentially distributed
random variable X:

E(X) =

∫ ∞
0

x · f(x)dx =

∫ ∞
0

λxe−λxdx =
1

λ
,

where the last equality follows from integration by parts (see Appendix).
By the same integration technique it can also be shown that the variance
Var[X] = 1/λ2.

Example 1: Suppose that λ = 5. The probability P (X ≤ 0.5) that X is
less than or equal to 0.5 is:

P (X ≤ 0.5) =

∫ 0.5

0

f(x)dx =

∫ 0.5

0

5e−5xdx =
[
−e−5x

]0.5
0

= −e−5·0.5 − (−e−5·0) = −0.082085 + 1 = 0.917915.



72 CHAPTER 3. IMPORTANT PROBABILITY DISTRIBUTIONS

Graphically, the probability P (X ≤ 0.5) is equal to the magenta area
under the curve of the density function f(x) over the interval between 0 and
0.5 in Figure 3.6. Also, figure 3.7 illustrates how easy it is to retrieve the
value P (X ≤ 0.5) = 0.917915 from the cumulative distribution function.
The value of P (X ≤ 0.5) can be computed in R by using pexp(.5,5):
> pexp(.5,5)
[1] 0.917915

Exponential probability density
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Figure 3.6: Graph of the exponential
probability density function (PDF) with
Poisson mean (λ = 5).
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Figure 3.7: Graph of the exponential
cumulative distribution function (CDF)
with Poisson mean (λ = 5).

We can plot Figure 3.6 by using dexp() with the polygon(), arrows(),
and text() functions:
> f <-function(x) { dexp(x,5) }
> plot(f, # function to plot
+ 0, # first x-value
+ 2, # last x-value
+ xlab="x",
+ ylab="Expontential mass function f(x)",
+ cex.lab=1.5) # make axis labels bigger
> x1 <- seq(0,0.5,.1) # set of magenta x-values
> x2 <- seq(0.5,2,.1) # set of blue x-values
> polygon(c(0,x1,.5), c(0,f(x1),0), col="magenta")
> polygon(c(.5,x2,2), c(0,f(x2),0), col="lightblue")
> arrows(0.75,2.5,0.25,1.6, lwd=3, col="green")
> text(0.86, 2.7 - c(0,0.7), cex = 1.2, adj=c(0,0), col="blue",
+ c(expression(P(X <= 0.5)),
+ expression(paste(" = ", integral(f(x) * dx, 0, 0.5)))))
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Similarly, we can plot Figure 3.7 by using the pexp() instead of the
dexp() function:
> F <- function(x) { pexp(x,5) }
> plot(F, # function
+ 0, # start x
+ 2, # end x
+ cex.lab=1.5, # make axis labels big
+ col="red",
+ lwd=6, # make line thicker
+ xlab="x",
+ ylab="Exponential cumulative distribution function F(x)")
> mtext("0.92",side=2,at=0.92, col="red")
> arrows(0.8,0.6,0.5,0.9, lwd=3, col="green")
> text(0.65, 0.5 - c(0,.11,.22,.33,.44), cex=1.2, adj=c(0,0), col="blue",
+ c(expression(P(X <= 0.5)),
+ expression(paste(" = ", integral(f(x) * dx, 0, 0.5))),
+ expression(paste(" = ", bgroup("[", F(x) ,"]")[0]^0.5)),
+ expression(paste(" = ", CDF(0.5))),
+ expression(paste(" = ", 0.92))))

The probability that X is larger than 2 is:

P (X ≥ 2) = 1− P (X ≤ 2) = 1− pexp(2, 5) = 0.000453.

> 1-pexp(2,5)
[1] 4.539993e-05

The probability that X is between 0.25 and 2 is equal to:

P (0.25 ≤ X ≤ 2) =

∫ 2

.25

f(x)dx

=

∫ 2

0

f(x)dx−
∫ 0.25

0

f(x)dx

= pexp(2, 5)− pexp(.25, 5) = 0.2864594.

> pexp(2,5)-pexp(.25,5)
[1] 0.2864594

To illustrate that the exponential distribution function is strictly increas-
ing, the graph of its cumulative distribution function is plotted, see Figure
3.7. The exact values for the quantiles x0.025 and x0.975 can be computed by
the following code:
> qexp(c(0.025,0.975), rate = 5, lower.tail = TRUE, log.p = FALSE)
[1] 0.005063562 0.737775891
> pexp(0.737775891,5)-pexp(0.005063562,5)
[1] 0.95
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Above, it is verified that 95% of the values of the distribution are be-
tween x0.025 = 0.005063562 and x0.975 = 0.737775891, that is P (x0.025 ≤ X ≤
x0.975) = 0.95.

3.2.2 Normal distribution

The normal distribution is widely used to model many types of biological
data (and other phenomena). For example, the normal distribution is com-
monly used to model (preprocessed) gene expression values. That is, the
data values x1, · · · , xn are often modeled as a relatively small sample that
is randomly selected from a much larger normally distributed population.
Equivalently, we can say that the data values are members of a normally
distributed population with mean µ (mu) and variance σ2 (sigma squared).
Typically, Greek letters are used to signify the population properties and
N (µ, σ2) is used to uniquely signify the normal population distribution with
mean µ and variance σ2. Additionally, usually the letters x and s are used
to signify the sample mean and sample standard deviation, respectively.

The equation for the normal distribution N (µ, σ2) is:

P (x) =
1

σ
√

2π
e−(x−µ)2/2σ2

Various properties of the normal distribution are illustrated by the exam-
ples below.

Example 1: Random sampling. When population X is distributed as
N (1.90, 0.52), then the population mean is 1.9 and the population standard
deviation is 0.5. If we randomly sample many times from this population,
then the resultant sample distribution should have the same normal distribu-
tion as the underlying population. To verify this we draw a random sample of
size 1000 from the population using the rnorm() function and then calculate
the mean() and sd() of our sample:
> x <- rnorm(1000,1.9,0.5) # 1000 random samples with mean=1.9 and sd=0.5
> mean(x)
[1] 1.915186
> sd(x)
[1] 0.4918254



3.2. CONTINUOUS PROBABILITY DISTRIBUTIONS 75

Indeed, the sample mean x = 1.9152 and sample standard deviation
s = 0.4918 are close to their population values µ = 1.9 and σ = 0.5.
1

Example 2: Teaching demonstration. Load the TeachingDemos package
and execute the command vis.normal() to view members of the normal
distribution family in an interactive display.
> library(TeachingDemos)
> vis.binom()

These bell-shaped curves are called normal probability densities and all
share the common characterisitic that the area under their curves equal 1.
The curves are symmetric around the mean µ and attain a unique maximum
at x = µ. As values of x move away from the mean µ, the curves asymptot-
ically approach the f(x) = 0 horizontal axis indicating that extreme values
occur with small probability. In the interactive display, move the Mean and
the Standard Deviation from the left to the right to explore their effects
on the shape of the normal distribution. In particular, when the mean µ
increases, then the distribution shifts to the right. When the σ is small or
large, then the distribution scales to be either steep or flat, respectively.

Example 3: Theoretical gene expression. Suppose that the CCND3
(Cyclin D3) gene expression values, reprented asX, is distributed asN (1.90, 0.52).
Then we can write X ∼ N (1.90, 0.52). From the N (1.90, 0.52) probability
density function in Figure 3.8, we see that the PDF is symmetric and bell-
shaped around the mean µ = 1.90.

The probability that the expression values are less then 1.4 is written as
P (N (1.90, 0.52) < 1.4) and can be calculated with the pnorm() function:
> pnorm(1.4,1.9,0.5) # left-side tail of the Normal cumulative density function (CDF)
[1] 0.1586553

Note that it may help to visualize the probability density function (PDF)
as a histogram with arbitrarily small bars (intervals) in the ideal case of
infinite datapoints. In other words, as our sample size increases the resultant
histogram should increasely match the probability density function of the
underlying population.

The value of the cumulative distribution function is given by P (N (1.90, 0.52) ≤ x)
which represents the probability of the population to have values smaller
than or equal to x. Figure 3.9 illustrates how easy it is to retrieve the

1Use the function round to print the mean in a desired number of decimal places.



76 CHAPTER 3. IMPORTANT PROBABILITY DISTRIBUTIONS

N (1.90, 0.52) normal probability
density function (PDF)
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Figure 3.8: Graph of the normal proba-
bility density function (PDF) with mean
1.9 and standard deviation 0.5.

N (1.90, 0.52) normal cumulative
distribution function (CDF)
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Figure 3.9: Graph of the normal cumu-
lative distribution function (CDF) with
mean 1.9 and standard deviation 0.5.

value P (N (1.90, 0.52) ≤ 1.4) = 0.16 from the cumulative distribution func-
tion. The P (N (1.90, 0.52) ≤ 1.4) also corresponds to the magenta area un-
der the probability density function (PDF) curve in Figure 3.8. We can
plot Figure 3.8 by using dnorm() with the polygon(), arrows(), mtext(),
expression(), and text() functions:
> dnormFun <- function(x) { dnorm(x,1.9,0.5) }
> x1<- seq(0,1.4,0.1)
> x2<- seq(1.4,4,0.1)
> plot(dnormFun, # function
+ 0, # start
+ 4, # end
+ cex.lab=1.5, # make axis labels big
+ xlab="x",
+ ylab="Normal probability density function f(x)")
> polygon(c(0.0,x1,1.4), c(0,dnormFun(x1),0), col="magenta")
> polygon(c(1.4,x2,4.0), c(0,dnormFun(x2),0), col="lightblue")
> mtext("1.4",side=1,at=1.4, col="red")
> arrows(0.6,0.43,1.0,0.1, lwd=3, col="green")
> text(0.3, 0.55 - c(0,.10), cex = 1.2, adj=c(0,0), col="blue",
+ c(expression(P(X <= 1.4)),
+ expression(paste(" = ", integral(f(x) * dx, -infinity, 1.4)))))

Similarly, we can plot Figure 3.9 by using the pnorm() instead of the
dnorm() function:
> pnormFun <- function(x) { pnorm(x,1.9,0.5) }
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> plot(pnormFun, # function
+ 0, # start
+ 4, # end
+ cex.lab=1.5, # make axis labels big
+ col="red",
+ lwd=6, # make line thicker
+ xlab="x",
+ ylab="Normal cumulative distribution function F(x)")
> mtext("1.4",side=1,at=1.4, col="red")
> mtext("0.16",side=2,at=0.16, col="red")
> arrows(0.9,0.45,1.4,0.16, lwd=3, col="green")
> text(0.5, 0.9 - c(0,.1,.2,.3,.4), cex=1.2, adj=c(0,0), col="blue",
+ c(expression(P(X <= 1.4)),
+ expression(paste(" = ", integral(f(x) * dx, -infinity, 1.4))),
+ expression(paste(" = ", bgroup("[", F(x) ,"]")[-infinity]^1.4)),
+ expression(paste(" = ", CDF(1.4))),
+ expression(paste(" = ", 0.16))))

The probability that the expression values are larger than 2.4 is P (N (1.90, 0.52) ≥ 2.4)
and can be calculated with the pnorm() function:
> 1-pnorm(2.4,1.9,0.5) # right-side tail of normal cumulative density function (CDF)
[1] 0.1586553

The probability that X ∼ N (1.90, 0.52) is between 1.4 and 2.4 equals
P (1.4 ≤ N (1.90, 0.52) ≤ 2.4) which can be calculated as the difference be-
tween two areas using the pnorm() function:
> pnorm(2.4,1.9,0.5)-pnorm(1.4,1.9,0.5) # central area of the normal cumulative density

↪→ function (CDF)
[1] 0.6826895

Figure 3.9 illustrates that the cumulative distribution function CDF is
strictly increasing.

The exact value for the quantile x0.025, which are the x-value for which
the P (N (1.90, 0.52) ≤ x) = 0.025, of the N (1.90, 0.52) distribution can be
computed using the qnorm() function:
> qnorm(0.025,1.9,0.5) # Normal quantile function
[1] 0.920018

Hence, it holds that the probability of values smaller than 0.920018 equals
0.025, that is P (N (1.90, 0.52) ≤ 0.920018) = 0.025, as can be verified with
the pnorm() function:
> pnorm(0.920018,1.9,0.5) # left-side tail of the Normal cumulative density function (

↪→ CDF)
[1] 0.025

For any X distributed as N (µ, σ2), it holds that (X − µ)/σ = Z is dis-
tributed as N (0, 1). Thus, by subtracting µ and dividing the result with σ
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any normally distributed variable can be standardized into a standard nor-
mally distributed Z having mean zero and standard deviation one.

Normal approximation to the binomial and Poisson. The continuous
normal distribution N (µ, σ2) can be used to approximate the discrete bino-
mial and Poisson distributions in certain parameter regimes. To see how well
the normal distributionN (µ = np, σ2 = np(1−p)) can approximate the bino-
mial distribution B(n, p) as n increases and p decreases, we can plot different
binomial distributions on top of the normal N (µ = np, σ2 = np(1−p)) prob-
ability density function (PDF). For example, Figure 3.10 illustrates how well
the normal distribution N (µ, σ2) can approximate the binomial distribution
B(n, p) for n > 50 and np > 10.

Likewise, to see how well the normal distribution N (µ = λ, σ2 = λ) can
approximate the Poisson(λ) distribution as λ increases, we can plot different
Poisson distributions on top of the N (µ = λ, σ2 = λ) probability density
function (PDF). For example, Figure 3.11 illustrates how well the normal
distribution N (µ = λ, σ2 = λ) can approximate the Poisson(λ) distribution
for λ > 10.
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The N (µ = np, σ2 = np(1− p))
approximation to the binomial

distribution B(n, p)
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Figure 3.10: Multiple binomial distribu-
tions B(n, p) with increasing n and de-
creasing p are plotted on top of the nor-
mal N (µ = np, σ2 = np(1 − p)) prob-
ability density function (PDF). We can
see that the normal N (µ = np, σ2 =
np(1− p)) distribution can well approx-
imate the binomial distribution B(n, p)
for n > 50 and np > 10.

The normal N (µ = λ, σ2 = λ)
approximation to the

Poisson(λ > 10) distribution
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Figure 3.11: Multiple Poisson(λ) distri-
butions with increasing λ are plotted on
top of the normal N (µ = 11, σ2 = 11)
probability density function (PDF). We
can see that the normal N (µ = λ, σ2 =
λ) distribution can well approximate the
Poisson(λ) distribution for λ > 10.

Similar to Figure 3.3, in Figures 3.10 and 3.11 we use the lines() function
in a for loop to add N additional curves on top of the original plot of the
normal N (µ, σ2) probability density function (PDF). We also assign the PDF
and N curves to a numbered color from 1 to N + 1. The R engine will
assign each of the numbers to a different color as determined by a predefined
color palette. Lastly, we use the apply() function in combination with the
expression() and bquote() functions to create the color legend for the
normal PDF and the N additional curves:
> x <- 0:20
> np=11
> xPolygon<- seq(0,20,0.1)
> dnormFun <- function(x) { dnorm(x,np,sqrt(np)) }
> plot(dnormFun, # normal density function
+ 0, # start
+ 20, # end
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+ col="lightblue",
+ ylim=c(0,0.4), # range of the y-axis
+ xlab="x",
+ ylab="Density function f(x)",
+ cex.lab=1.5) # make axis labels big
> polygon(c(0.0,xPolygon,20), c(0,dnormFun(xPolygon),0), col="lightblue")
> for (counter in 1:9) {
+ lines(x, dbinom(x, size=counter*12, prob=np/(counter*12)), col=counter, lwd=2)
+ }
> legend("topleft", lty=rep(1,10), lwd=rep(2,10), col=c("lightblue",1:9),
+ legend=c(expression(Normal(mu == 11, sigma^2 == 11)),
+ as.expression(sapply(seq(12,108, 12), function(x) bquote(B(n ==.(x), p == 11/

↪→ .(x)))))))

> x <- 0:20
> xPolygon<- seq(0,20,0.1)
> dnormFun <- function(x) { dnorm(x,11,sqrt(11)) }
> plot(dnormFun, # normal density function
+ 0, # start
+ 20, # end
+ col="lightblue",
+ ylim=c(0,0.4), # range of the y-axis
+ xlab="x",
+ ylab="Density function f(x)",
+ cex.lab=1.5) # make axis labels big
> polygon(c(0.0,xPolygon,20), c(0,dnormFun(xPolygon),0), col="lightblue")
> for (counter in 1:11) {
+ lines(x, dpois(x,counter), col=counter, lwd=2)
+ }
> legend("topright", lty=rep(1,12), lwd=rep(2,12), col=c("lightblue",1:11),
+ legend=c(expression(Normal(mu == 11, sigma^2 == 11)),
+ as.expression(sapply(1:11, function(x) bquote(Poisson(lambda ==.(x)))))))

3.2.3 Chi-squared distribution

The chi-squared distribution plays an important role in testing hypotheses
about frequencies. Let {Z1, · · · , Zm} be independent and standard normally
distributed random variables. Then the sum of their squares

χ2
m = Z2

1 + · · ·+ Z2
m =

m∑
i=1

Z2
i ,

is the so-called chi-squared distributed (random) variable with m degrees of
freedom.

Example 1: Teaching demonstration. Load the TeachingDemos pack-
age to view various members of the χ2 distribution. Execute the command
vis.gamma() to open an interactive display of various distributions. For dif-
ferent distribution examples, click on "Visualizing the gamma", "Visualizing
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the Chi-squared", and adapt "Xmax". Also, moving the "Shape" button to
the right will increase the degrees of freedom. Observe that the graphs of
chi-squared densities change from heavily skewed to the right into a more
bell-shaped, normal distribution as the degrees of freedom increases.

> library(TeachingDemos)
> vis.gamma()
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Figure 3.12: Graph of the χ2
5 probability

density function (PDF) with 5 degrees of
freedom.
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Figure 3.13: Graph of the χ2
5 cumulative

distribution function (CDF) with 5 de-
grees of freedom.

Example 2: Five degrees of freedom. Let’s consider the chi-squared
variable with 5 degrees of freedom; χ2

5 = Z2
1 + · · · + Z2

5 . To compute the
probability P (χ2

5 ≤ 8) of observing values smaller than eight, we use the
function pchisq() as follows:
> pchisq(8,5) # left-side tail of the Chi-squared cumulative density function (CDF)
[1] 0.8437644

This yields the value of the cumulative distribution function (CDF) at
x = 8 (see Figure 3.13). This value corresponds to the magenta area below
the probability density function (PDF) curve in Figure 3.12. We can plot
Figure 3.12 by using the dchisq() function:
> dchisqFun<-function(x) { dchisq(x,5) }
> plot(dchisqFun, # function
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+ 0, # start
+ 25, # end
+ cex.lab=1.5, # make axis labels big
+ xlab="x",
+ ylab="Chi-Squared probability density function f(x)")
> x1 <- seq(0,8,0.1)
> x2 <- seq(8,25,0.1)
> polygon(c(0,x1,8), c(0,dchisqFun(x1),0), col="magenta")
> polygon(c(8,x2,25), c(0,dchisqFun(x2),0), col="lightblue")
> mtext("8",side=1,at=8)
> arrows(11,0.07,5,0.07, lwd=3, col="green")
> text(13, 0.075 - c(0,.018), cex = 1.2, adj=c(0,0), col="blue",
+ c(expression(P(X <= 8)),
+ expression(paste(" = ", integral(f(x) * dx, 0, 8)))))

Similarly, we can plot Figure 3.13 by using the pchisq() function:
> pchisqFun<-function(x) { pchisq(x,5) }
> plot(pchisqFun, # function
+ 0, # start
+ 20, # end
+ cex.lab=1.5, # make axis labels big
+ col="red",
+ lwd=6, # make line thicker
+ xlab="x",
+ ylab="Chi-Squared cumulative distribution function F(x)")
> mtext("8", side=1,at=8, col="red")
> mtext("0.84",side=2,at=0.84, col="red")
> arrows(11,0.74,8,0.84, lwd=3, col="green")
> text(12, 0.67 - c(0,.11,.22,.33,.44), cex=1.2, adj=c(0,0), col="blue",
+ c(expression(P(X <= 8)),
+ expression(paste(" = ", integral(f(x) * dx, 0, 8))),
+ expression(paste(" = ", bgroup("[", F(x) ,"]")[0]^8)),
+ expression(paste(" = ", CDF(8))),
+ expression(paste(" = ", 0.84))))

Often, we are interested in the value for the quantile x0.025, where P (χ2
5 ≤

x0.025) = 0.025. 2 The quantile x0.025 can be computed by using the qchsq()
function:
> qchisq(0.025, 5, lower.tail=TRUE) # Chi-squared quantile function
[1] 0.8312116

Example 3: Goodness of fit. The chi-squared distribution is frequently
used as a so-called “goodness of fit” measure. For example, say that some-
one has hypothesized that the expression values of the CCND3 (Cyclin D3)
gene for ALL patients are distributed as N (1.90, 0.502). If that hypothe-
sis is true, then the probability of observing values greater than the sum of
the squared, standardized, observed values should be about a 1/2, that is

2If the cumulative distribution is strictly increasing, then there exists an exact and
unique solution for the quantiles.
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P
(
χ2

27 ≥
∑27

1 z2
i

)
≈ 0.5. We can use the Golub et al. data to test this hy-

pothesis. Let x1, · · · , x27 be the observed gene expression values for CCND3
(Cyclin D3). Then the standardized values are zi = (xi − 1.90)/0.50 and
their sum of squares is

∑27
1 z2

i = 25.03312. The probability of observing
larger values is P (χ2

27 ≥ 25.03312) = 0.5726 ≈ 0.5, which indicates that this
normal distribution fits the data well. Hence, it is likely that the specified
normal distribution is indeed correct. We can make these calculations by
using the pchisq() function:
> library(multtest); data(golub)
> golubFactor <- factor(golub.cl,levels=0:1, labels= c("ALL","AML"))
> ccnd3 = grep("CCND3",golub.gnames[ ,2], ignore.case = TRUE)
> ccnd3
[1] 1042
> x <- golub[ccnd3,golubFactor=="ALL"]
> z <- (x-1.90)/0.50
> sum(z^2)
[1] 25.03312
> pchisq(sum(z^2),27, lower.tail=FALSE)
[1] 0.5726059

In the next chapter, we will explore hypothesis tests that provide a mea-
sure of how well the normal distribution N (1.90, 0.502) models (or fits) the
observed CCND3 gene expression data for the ALL patients.

3.2.4 t-Distribution

The t-distribution (short for Student’s t-distribution) has many useful appli-
cations for testing hypotheses about one or two normally distributed popula-
tions based on the means and standard deviations of one or two samples. For
example, we will use the t-Distribution to model the difference between two
observed gene expression means. If the population is normally distributed,
then the values of

√
n(x− µ)/s from the sample data follow a t-distribution

with n−1 degrees of freedom. The t-Distribution is very helpful particularly
when the sample size is < 30. For small sample sizes, the t-Distribution
is similar to the normal distribution except for that the tails are “fatter”
(i.e. the tails have more probability density). However, as the sample size n
increases the tails of the t-Distribution get skinnier and approach the tails
of the normal distribution. And when the sample size is ≥ 30 then the t-
distribution is approximately equal to the normal distribution.

Example 1: Teaching demonstration. Load the TeachingDemos package
and execute vis.t() to explore a visualization of the t-distribution. Click on
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t10 probability density function
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Figure 3.14: Graph of the t10 probability
density function (PDF) with 10 degrees
of freedom.

t10 cumulative distribution
function (CDF)
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Figure 3.15: Graph of the t10 cumulative
distribution function (CDF) with 10 de-
grees of freedom.

"Show Normal Distribution" and increase the number of degrees of freedom
to verify that df = 30 is sufficient for the normal approximation to be quite
precise.

> library(TeachingDemos)
> vis.t()

Example 2: Gdf5 gene expression. A quick NCBI scan makes it rea-
sonable to assume that the gene Gdf5 has no direct relation with leukemia.
For this reason, we will assume that the mean change in Gdf5 expression
for the AML patients is 0, that is µGdf5 = 0. With this assumption, we can
attempt to use the t-Distribution to model our data. The grep() function
can be used to find the row of expression values for the Gdf5 gene in the
golub matrix. Then we can compute the sample t-value

√
n(x− µGdf5)/s:

> n <- 11
> gdf5 = grep("GDF5",golub.gnames[ ,2], ignore.case = TRUE)
> gdf5
[1] 2058
> x <- golub[gdf5, golubFactor=="AML"]
> t.value <- sqrt(n)*(mean(x)-0)/sd(x)
> t.value
[1] 1.236324
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From above, we now know that the t-values for multiple samples of Gdf5
gene expression should follow the t-distribution with n − 1 = 10 degrees
of freedom, represented as t10. The probability of observing our t-value of
1.236324 or greater in the t10 distribution is computed as follows:

P (t10 ≥ 1.236324) = 1− P (t10 ≤ 1.236324)

and can be calculated with:
> 1 - pt(1.236324,10) # right-side tail of the t-distribution cumulative density

↪→ function (CDF)
[1] 0.1222945

The probability P (t10 ≥ 1.236324) corresponds to the magenta area below
the probability density function (PDF) curve in Figure 3.14. We can create
Figure 3.14 by using the dt() function:
> f<-function(x) { dt(x,10) }
> plot(f, # function
+ -5, # start
+ 5, # end
+ cex.lab=1.5, # make axis labels big
+ xlab="x",
+ ylab="t-Distribution probability density function f(x)")
> x1 <- seq(-5,1.24,0.01)
> x2 <- seq(1.24,5,0.01)
> polygon(c(-5,x1,1.24), c(0,f(x1),0), col="lightblue")
> polygon(c(1.24,x2,5), c(0,f(x2),0), col="magenta")
> mtext("1.24",side=1,at=1.24, col="red")
> arrows(2.7,0.20,2.7,0.01, lwd=3, col="green")
> text(1.8, 0.3 - c(0,.043, .086), cex = 1.2, adj=c(0,0), col="blue",
+ c(expression(P(X >= 1.24)),
+ expression(paste(" = ", integral(f(x) * dx, 1.24, infinity))),
+ expression(paste(" = ", 1 - integral(f(x) * dx, -infinity, 1.24)))))

The t-distribution cumulative distribution function (CDF) with ten de-
grees of freedom is illustrated in Figure 3.15. Similar to Figure 3.14, we can
create Figure 3.15 by using the pt() function:
F<-function(x) { pt(x,10) }
> plot(F, # function
+ -5, # start
+ 5, # end
+ cex.lab=1.5, # make axis labels big
+ col="red",
+ lwd=6, # make line thicker
+ xlab="x",
+ ylab="t-Distribution cumulative distribution function F(x)")
> mtext("1.24",side=1,at=1.24, col="red")
> mtext("0.88",side=2,at=0.88, col="red")
> arrows(-1,0.88,1.24,0.88, lwd=3, col="green")
> text(-3.7, 0.85 - c(0,.11,.22,.33,.44,.55), cex=1.2, adj=c(0,0), col="blue",
+ c(expression(P(X >= 1.24)),
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+ expression(paste(" = ", 1 - integral(f(x) * dx, -infinity, 1.24))),
+ expression(paste(" = ", 1 - bgroup("[", F(x) ,"]")[-infinity]^1.24)),
+ expression(paste(" = ", 1 - CDF(1.24))),
+ expression(paste(" = ", 1 - 0.88)),
+ expression(paste(" = ", 0.12))))

The probability P (−2 ≤ t11 ≤ 2) that the random variable t10 is between
-2 and 2 can be calculated as the difference between two CDFs using the
pt() function:
> pt(2,10)-pt(-2,10) # t-distribution cumulative density function (CDF) - central area
[1] 0.926612

Lastly, the 2.5% quantile x0.025 of t10, which is the x-value for which the
P (t10 ≤ x) = 0.025, can be computed by using the qt() function:
> qt(0.025,n-1) # t-distribution quantile function
[1] -2.228139

3.2.5 F-Distribution

The F -distribution is widely used for testing whether the population vari-
ances of two normal populations are equal, based on the sample standard
deviations. It can be shown that the ratio of variances between two inde-
pendent samples from two normally distributed random variables follows an
F -distribution. More specifically, if the two population variances are equal
(σ2

1 = σ2
2), then for two samples s1 and s2 the ratio s2

1/s
2
2 follows an F -

distribution with n1 − 1, n2 − 1 degrees of freedom, where s2
1 is the variance

of the first set, s2
2 that of the second, and n1 is the number of observations

in the first set and n2 in the second.3

Example 1: CCND3 gene expression. When the two population vari-
ances are in fact equal, then the probability is great that the ratio of their
sample variances is near one. Using the Golub et. al. (1999) data, we can
calculate the probability of observing the CCND3 sample variances for the
ALL and AML patients after assuming that their population variances are
the same. First, we compute the ratio between the sample CCND3 expression
variances among the ALL and AML patients:
> var(golub[1042,golubFactor=="ALL"]) / var(golub[1042,golubFactor=="AML"])
[1] 0.7116441

3It is more correct to define S2
1/S

2
2 for certain random variables S2

1 and S2
2 . We shall,

however, not bother.
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F26,10 probability density function
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Figure 3.16: Graph of the F26,10 prob-
ability density function (PDF) with
(26,10) degrees of freedom.

F26,10 cumulative distribution
function (CDF)
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Figure 3.17: Graph of the F26,10 cumu-
lative distribution function (CDF) with
(26,10) degrees of freedom.

Since n1 = 27 and n2 = 11, our ratio of the sample variances should be a
realization of the F26,10 distribution. The probability of observing our ratio
0.7116441 or smaller in the F26,10 distribution is P (F26,10 ≤ 0.7116441). We
can calculate this probability using the pf() function:
> pf(0.7116441,26,10) # left-side tail of the F-distribution cumulative density function

↪→ (CDF)
[1] 0.2326147

In Figure 3.16, the probability P (F26,10 ≤ 0.7116441) corresponds to the
magenta area below the probability density function (PDF) curve. We can
create Figure 3.16 by using the df() function:
> f<-function(x) { df(x,26,10) }
> plot(f, # function
+ 0, # start
+ 10, # end
+ cex.lab=1.5, # make axis labels big
+ xlab="x",
+ ylab="F-Distribution probability density function f(x)")
> mtext("0.71",side=1,at=.7,cex=1, col="red")
> x1 <- seq(0,0.71,0.01)
> x2 <- seq(0.71,10,0.01)
> polygon(c(0,x1,.71), c(0,f(x1),0), col="magenta")
> polygon(c(.71,x2,10), c(0,f(x2),0), col="lightblue")
> arrows(4.5,.50,0.55,.3, lwd=3, col="green")
> text(5.0, 0.53 - c(0,.11), cex = 1.2, adj=c(0,0), col="blue",
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+ c(expression(P(X <= 0.71)),
+ expression(paste(" = ", integral(f(x) * dx, 0, 0.71)))))

Figure 3.17 gives the values of the cumulative distribution function. Sim-
ilary, we can create Figure 3.17 by using the pf() function:
> f<-function(x) { pf(x,26,10) }
> plot(f, # function
+ 0, # start
+ 10, # end
+ cex.lab=1.5, # make axis labels big
+ col="red",
+ lwd=6, # make line thicker
+ xlab="x",
+ ylab="F-Distribution cumulative distribution function F(x)")
> mtext("0.71",side=1,at=.7, cex=1, col="red")
> mtext("0.23",side=2,at=.23,cex=1, col="red")
> arrows(3,0.3,0.71,0.23, lwd=3, col="green")
> text(4.0, 0.5 - c(0,.12,.24,.36,.48), cex=1.2, adj=c(0,0), col="blue",
+ c(expression(P(X <= 0.71)),
+ expression(paste(" = ", integral(f(x) * dx, 0, 0.71))),
+ expression(paste(" = ", bgroup("[", F(x) ,"]")[0]^0.71)),
+ expression(paste(" = ", CDF(0.71))),
+ expression(paste(" = ", 0.23))))

Lastly, to find the quantile x0.025 of the F26,10 distribution, which is the
x-value for which the P (F26,10 ≤ x) = 0.025, we can use the qf() function:
> qf(.025,26,10) # F-distribution quantile function
[1] 0.3861673

This subject is taken further in Section 4.1.6.

3.3 Overview and concluding remarks

R has many built-in functions for probability calculations that use the bino-
mial, normal, t, F, χ2-distributions, where d stands for probability Density,
p for cumulative Probability distribution, q for Quantiles, and r for drawing
Random samples (see Table 3.2). The values of the density, expectation, and
variance of most of the distributions in this chapter are summarized in Table
3.3.

Although the above distributions are without a doubt among the most
important, there are several additional distributions available such as the
Gamma, beta, or Dirichlet that can also be used to model different types of
biological data. We encourage the reader to learn more about how and when
to use them. The free encyclopedia wikipedia often gives a useful good first,
though incomplete, introduction to the characteristics of these distributions.
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Table 3.2: Built-in functions for random variables used in this chapter.

para- random
Distribution meters density cumulative quantiles sampling
Binomial n, p dbinom(x, n, p) pbinom(x, n, p) qbinom(α, n, p) rbinom(10, n, p)
Poisson λ dpois ppois qpois rpois
Exponential λ dexp pexp qexp rexp
Normal µ, σ dnorm(x, µ, σ) pnorm(x, µ, σ) qnorm (α, µ, σ) rnorm(10, µ, σ)
Chi-squared m dchisq(x,m) pchisq(x,m) qchisq(α,m) rchisq(10,m)
t m dt(x,m) pt(x,m) qt(α,m) rt(10,m)
F m,n df(x,m, n) pf(x,m, n) qf(α,m, n) rf(10,m, n)

Note that a distribution acts as a population from which a sample can
be drawn. Hence, distributions can be seen as models of data generating
procedures. For a more technical treatment of distributions we refer the
reader to Bain & Engelhardt (1992), Johnson et al. (1992), and Miller &
Miller (1999).

Table 3.3: Density, mean, and variance of distributions used in this chapter.

Distribution parameters probability mass or density expectation variance
Bernoulli p pk(1− p)1−k for k ∈ {0, 1} p p(1− p)
Binomial n, p n!

k!(n−k)!
pk(1− p)n−k np np(1− p)

Poisson λ e−λλx/x! λ λ
Exponential λ λe−λx 1/λ 1/λ2

Normal µ, σ 1
σ
√

2π
exp(−1

2
(x−µ

σ
)2) µ σ2

Chi-squared df=k 1

2
k
2 Γ( k

2
)
x

k
2
−1e−

x
2 k 2k

3.4 Exercises
It is important to obtain some familiarity with the computation of probabil-
ities and quantiles.

1. Binomial distribution. Let X be binomially distributed with n = 60
and p = 0.4. Compute the following.

(a) P (X = 24), P (X ≤ 24), and P (X ≥ 30).

(b) P (20 ≤ X ≤ 30), P (20 ≤ X).
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(c) P (20 ≤ X or X ≥ 40), and P (20 ≤ X and X ≥ 10).

(d) The mean and standard deviation of X.

(e) The quantiles x0.025, x0.5, and x0.975.

2. Standard normal distribution. Compute the following probabilities
and quantiles.

(a) P (1.6 < Z < 2.3).

(b) P (Z < 1.64).

(c) P (−1.64 < Z < −1.02).

(d) P (0 < Z < 1.96).

(e) P (−1.96 < Z < 1.96).

(f) The quantiles z0.025, z0.05, z0.5, z0.95, and z0.975.

3. Normal distribution. Compute for X distributed as N (10, 2) the
following probabilities and quantiles.

(a) P (X < 12).

(b) P (X > 8).

(c) P (9 < X < 10, 5).

(d) The quantiles x0.025, x0.5, and x0.975.

4. t-distribution. Compute the following probabilities and quantiles for
the t6 distribution.

(a) P (t6 < 1).

(b) P (t6 > 2).

(c) P (−1 < t6 < 1).

(d) P (−2 < t6 < −2).

(e) The quantiles t0.025, t0.5, and t0.975.

5. F distribution. Compute the following probabilities and quantiles for
the F8,5 distribution.

(a) P (F8,5 < 3).
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(b) P (F8,5 > 4).

(c) P (1 < F8,5 < 6).

(d) The quantiles f0.025, f0.5, and f0.975.

6. Chi-squared distribution. Compute the following for the chi-squared
distribution with 10 degrees of freedom.

(a) P (χ2
10 < 3).

(b) P (χ2
10 > 4).

(c) P (1 < χ2
10 < 6).

(d) The quantiles x0.025, x0.5, and x0.975.

7. Purines in microRNAs. Suppose that for certain microRNA of size
20 the probability of a purine is binomially distributed with probability
0.7.

(a) What is the probability of 14 purines?

(b) What is the probability of less than or equal to 14 purines?

(c) What is the probability of strictly more than 10 purines?

(d) What is the probability that there are between 10 and 15 purines,
inclusive?

(e) How many purines do you expect? In other words: What is the
mean of the distribution?

(f) What is the standard deviation of the distribution?

8. Zyxin gene expression. The distribution of the expression values
of the ALL patients on the Zyxin gene are distributed according to
N (1.6, 0.42).

(a) Compute the probability that the expression values are smaller
than 1.2.

(b) What is the probability that the expression values are between 1.2
and 2.0?

(c) What is the probability that the expression values are between 0.8
and 2.4?

(d) Compute the exact values for the quantiles x0.025 and x0.975.
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(e) Use rnorm to draw a sample of size 1000 from the population and
compare the sample mean and standard deviation with that of the
population.

9. Some computations on the Golub et al. (1999) data.

(a) Take µ = 0 and compute the t-values for the ALL gene expression
values. Find the three genes with largest absolute t-values.

(b) Compute per gene the ratio of the variances for the ALL over the
AML patients. How many are between 0.5 and 1.5?

10. Extreme value investigation. This difficult question aims to teach
the essence of an extreme value distribution. An interesting extreme
value distribution is given by Pevsner (2003, p.103). To repeat this
example, take the maximum of a sample (with size 1000) from the
standard normal distribution and repeat this a 1000 times - so that
you have sampled 1000 maxima. Next, subtract from these maxima an
and divide by bn, where:
an <- sqrt(2*log(n)) - 0.5*(log(log(n))+log(4*pi))*(2*log(n))^(-1/2)
bn <- (2*log(n))^(-1/2)

Now plot the density from the normalized maxima and add the extreme
value function f(x) from the Pevsner example, and add the density
(dnorm) from the normal distribution. What do you observe?


