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Å An unsupervisedmachine learning problem

Å Grouping a set of objects in such a way that objects in the same group (a cluster) are more 
similar(in some sense or another) to each other than to those in other groups (clusters)

Å Requires a distance metric (or distance function) to quantify similarity
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ÅHard clustering

ÅEach object is assigned to one and only one cluster

ÅHierarchical clustering is usually hard

ÅSoft (fuzzy) clustering

ÅAllows degrees of membership and membership in multiple 
clusters

ÅCentroid-based clustering can be both hard and soft
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Å Based on the idea of objects being more related to nearby objects than to objects farther 
away. 

Å Connects objects to form clusters based on their distance. A cluster can be described largely 
by the maximum distance needed to connect parts of the cluster. At different distances, 
different clusters will form

Å Can be represented using a hierarchical dendrogram

Å Does not provide a single partitioning of the data set, but instead provides an extensive 
hierarchy of clusters that merge with each other at certain distances.

Å In a dendrogram, the y-axis marks the distance at which the clusters merge, while the objects 
are placed along the x-axis such that the clusters don't mix.

Å Connectivity based clustering is a whole family of methods that differ by the way distances 
and linkage criterion are computed.

Å The linkage criterion is the method to compute the distance (link) to a clusterthat consists of 
multiple
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Å Common linkage criteria

Å Single-Linkage Clustering - the minimum of object distances

Å Complete Linkage Clustering - the maximum of object distances

Å UPGMA("UnweightedPair Group Method with Arithmetic Mean", also known as 
average linkage clustering).

Å Does not produce a unique partitioning of the data set, but a hierarchy from which the user 
still needs to choose appropriate clusters.

Å Not robust to outliers, which will either show up as additional clusters or even cause other 
clusters to merge (known as the "chaining phenomenon", common with single-linkage 
clustering). 

Å Recognized as the theoretical foundation of all cluster analysis, but often considered obsolete. 
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ÅHierarchical clustering can be top-down or bottom-up:

ÅTop-down (partitioning)

Åstarts with one group (all objects belong to one cluster)
Ådivides it into groups as to maximize within group similarity

ÅBottom-up (agglomerative)

Åstarts with separate cluster for each object
Å in each step two most similar clusters are determined and merged into 

new cluster
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g1 g2 g3 g4

g2 0.30

g3 2.24 2.12

g4 2.44 2.28 0.40
g5 5.66 5.45 3.61 3.28
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Clustering of the expression of 5 genes
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Å A metric d on a setX:  d : X ×· Ҧ R    (where Ris the set of real numbers)

Å For all x, y, z in X, this function is required to satisfy the following conditions:

Å ŘόȄΣ ȅύ җ л     (non-negativity, or separation axiom)
Å d(x, y) = 0   if and only if   x = y     (identity of indiscernibles, or coincidence axiom)
Å d(x, y) = d(y, x)     (symmetry)
Å ŘόȄΣ Ȋύ Җ ŘόȄΣ ȅύ Ҍ ŘόȅΣ Ȋύ     (subadditivity / triangle inequality).

Å Conditions 1 and 2 together produce positive definiteness. The first condition is implied by the 
others.

Å A metric is ultrametric if it satisfies the following stronger version of the triangle inequality 
where points can never fall 'between' other points:

Å For ŀƭƭ ȄΣ ȅΣ Ȋ ƛƴ ·Σ ŘόȄΣ Ȋύ Җ ƳŀȄόŘόȄΣ ȅύΣ ŘόȅΣ Ȋύύ

Å A metric d on X is called intrinsic if any two points x and y in X can be joined by a curvewith 
length arbitrarily close to d(x, y).



4

Biology 644: Bioinformatics

Å Euclidean Metric

Å Manhattan (taxicab) Metric
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Å Clusters are represented by a central vector, which may not necessarily be a member of the 
data set. 

Å When the number of clusters is fixed to k, k-means clustering gives a formal definition as an 
optimization problem: 

Å find the k cluster centers and assign the objects to the nearest cluster center, such that 
the squared distances from the cluster are minimized.

Å Given a set of observations(x1, x2Σ ΧΣ xn), where each observation is a d-dimensional real 
vector, k-means clustering aims to partition the n observationsinto k setsόƪ Җ ƴύ { Ґ ϑ{1, 
S2Σ ΧΣ Sk} so as to minimize the Within-Cluster Sum of Squares (WCSS):

Å where ˃ i is the centroid(mean of all points)in Si.
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Å The optimization problem itself is known to be NP-hard, and thus the common approach is to 
search only for approximate solutions. 

Å A common method is Lloyd's algorithm, often referred to as "k-means algorithm".

Å Finds a local optimum, and is commonly run multiple times with different random 
initializations. 

Å Variations of k-means often include different optimizations
Å Restricting the centroids to members of the data set (k-medoids)
Å Choosing medians (k-medians clustering), 
Å Choosing the initial centers less randomly (K-means++)
Å Allowing a fuzzy cluster assignment (Fuzzy c-means).

Å Most k-means-type algorithms require the number of clusters - k - to be specified in advance, 
which is considered to be one of the biggest drawbacks of these algorithms. 

Å The algorithm prefers clusters of approximately similar size, as they will always assign an 
object to the nearest centroid. This often leads to incorrectly cut borders in between of 
clusters.
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Å Clusters are defined as objects belonging most likely to the same distribution. 

Å A nice property of this approach is that it models how many biologicaldata sets are 
generated: by sampling random objectsfrom a distribution.

Å A drawback is that it can suffer from overfitting, unless constraints are put on the model 
complexity. 

Å A more complex model will usually always be able to explain the data better, which makes 
choosing the appropriate model complexity inherently difficult.

Å One common method is the Gaussian mixture model

Å The data set is usually modelled with a fixed (to avoid overfitting) number of Gaussian 
distributions that are initialized randomly and whose parameters are iteratively 
optimized to fit better to the data set. 

Å Converges to a local optimum, so multiple runs may produce different results. 

Å Typically uses the expectation-maximization(EM) algorithm
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